Author Proof

®

Check for
updates

HPC Benchmarking: Scaling Right
and Looking Beyond the Average

Milan Radulovic®2®) | Kazi Asifuzzaman®?, Paul Carpenter?,
Petar Radojkovié!, and Eduard Ayguadé!»?

! Barcelona Supercomputing Center (BSC), Barcelona, Spain
{milan .radulovic,kazi.asifuzzaman,paul.carpenter,
petar.radojkovic}@bsc.es
2 Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
eduard@ac.upc.edu

Abstract. Designing a balanced HPC system requires an understanding
of the dominant performance bottlenecks. There is as yet no well estab-
lished methodology for a unified evaluation of HPC systems and work-
loads that quantifies the main performance bottlenecks. In this paper, we
execute seven production HPC applications on a production HPC plat-
form, and analyse the key performance bottlenecks: FLOPS performance
and memory bandwidth congestion, and the implications on scaling out.
We show that the results depend significantly on the number of execu-
tion processes and granularity of measurements. We therefore advocate
for guidance in the application suites, on selecting the representative
scale of the experiments. Also, we propose that the FLOPS performance
and memory bandwidth should be represented in terms of the propor-
tions of time with low, moderate and severe utilization. We show that
this gives much more precise and actionable evidence than the average.

Keywords: HPC applications - Bottlenecks -+ FLOPS
Memory bandwidth - Scaling-out

1 Introduction

Deploying an HPC infrastructure is a substantial investment in time and money,
so it is extremely important to make the right procurement decision. Unfortu-
nately, evaluating HPC systems and workloads and quantifying their bottlenecks
is hard. There are currently three main approaches. The approach taken by
TOP500 and Greenb00 is to evaluate systems using a prominent HPC bench-
mark, such as High-Performance Linpack (HPL) [20] or High Performance Con-
jugate Gradients (HPCG) [5]. Another approach is to measure the sustained
performance of the various components in the system using specialized kernel
benchmarks, such as HPC Challenge [13]. By design, kernel benchmarks quan-
tify only the sustainable performance of individual system components, so they
lack the capability to determine how a real-world production HPC application
will behave on the same platform.

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 1-12, 2018.
https://doi.org/10.1007/978-3-319-96983-1_10

Author Proof

2 M. Radulovic et al.

The final approach, which is the one taken in this paper, is to mimic pro-
duction use by running a set of real HPC applications from diverse scientific
fields [23]. We execute seven production HPC applications, together with HPL
and HPCG, on a production x86 platform, and we reach two main conclusions.
Firstly, we find that HPC application performance and CPU/memory system
bottlenecks are strongly dependent on the number of application processes.
This is typically overlooked in benchmark suites, which seldom define how many
processes should be used. We argue that it is essential that HPC application
suites specify narrow ranges on the number of processes, so that the results are
representative of real world application use, or that they at least provide some
guidelines. Secondly, we find that average values of bytes/FLOP, bytes/s
and FLOPs/s can be highly misleading. Our results show that the applica-
tions under study have low average FLOPs/s utilization and moderate pressure
on the memory bandwidth. However, we identified several applications, such
as ALYA and GENE, with a moderate average memory bandwidth that spend
more than 50% of their computation time in phases where the memory band-
width bottleneck is severe. We therefore recommend that rather than thinking in
terms of average figures, one measures the percentage of time that the utilization
of memory bandwidth or FLOPs/s is low (below 40% of sustainable maximum),
moderate (40% to 80%) and severe (above 80%). These three figures give a much
more precise picture of the application behavior than the average.

In summary, given the substantial investment of time and money to deploy an
HPC system, it is important to carefully evaluate HPC architectures. Compared
with benchmarks or kernels, system evaluation with HPC application suites can
give a more complete picture of the HPC system behavior. However, our results
show that it is very important that HPC application suites specify narrow ranges
for the number of processes that are representative of real-life application behav-
ior, or at least provide some guidelines so users themselves could determine
these ranges for their target platforms. In addition, reporting key application
measurements using the average values may conceal bursty behavior, and give
a misleading impression of how performance would be affected by changes in
the platform’s memory bandwidth. We suggest to avoid average figures when
evaluating performance or bottlenecks, and instead measure the percentage of
time that these figures are low, moderate and severe, with respect to their sus-
tained peak, which gives a more precise picture of the application’s or system’s
behavior.

We hope our study will stimulate awareness and dialogue on the subject
among the community, and lead to improved standards of evaluating and report-
ing performance results in HPC.

2 Experimental Environment

In this section, we explain the experimental platform, workloads, methodology
and tools we used in our analysis.

Author Proof

HPC Benchmarking: Scaling Right and Looking Beyond the Average 3

2.1 Experimental Platform

The experiments are executed on the MareNostrum 3 supercomputer [3], the
third version of one of the six Tier-0 (largest) HPC systems in Europe [21]. It
comprises dual-socket Intel Sandy Bridge-EP E5-2670 nodes. Each socket com-
prises eight cores operating at 3.0 GHz. As in most HPC systems, hyperthreading
is disabled. The processors connect to main memory through four channels, each
with a single DDR3-1600 DIMM. Regular MareNostrum compute nodes include
32 GB of DRAM memory, i.e., 2 GB per core. The nodes are connected with an
InfiniBand FDR-10 (40 Gb/s) interconnect, as a non-blocking two-level fat-tree
topology.

2.2 Workloads

High-Performance Linpack

For a long time, the High-Performance Linpack (HPL) [20] benchmark has been
the de facto metric for ranking HPC systems. It measures the sustained floating-
point rate (GFLOPs/s) for solving a dense system of linear equations using
double-precision floating-point arithmetic. The linear system is randomly gen-
erated, with a user-specified size, so the user can scale the problem to achieve
the best performance on a given system. HPL stresses only the system’s float-
ing point performance, without stressing other important contributors to overall
performance, such as the memory subsystem. The most prominent evaluation
of HPC systems constitutes the TOP500 list [24], which has been criticized for
assessing system performance using only HPL [12]. The community has pointed
out the weaknesses of HPL and advocated for a way to evaluate HPC systems
that is better correlated with the needs of production HPC applications [6].

High-Performance Conjugate Gradients

High Performance Conjugate Gradients (HPCG) [5], has been released as a com-
plement to the FLOPs-bound HPL. It is based on an iterative sparse-matrix con-
jugate gradient kernel with double-precision floating-point values. While HPL
can exploit data locality and thus cope with relatively low memory bandwidth,
HPCG performance is largely proportional to the available memory bandwidth.
HPCG is a good representative of HPC applications governed by differential
equations, which tend to have much stronger needs for high memory bandwidth
and low latency, and tend to access data using irregular patterns.

HPC Applications

Evaluating HPC systems using benchmarks that target specific performance
metrics is not enough to determine the performance of a real-world application.
It is therefore essential to execute production applications on an HPC system to
better understand the bottlenecks and constraints experienced by a production
HPC application. There are efforts in making suites of HPC applications that
could be used in benchmarking purposes, such as NSF [17], NCAR [15] and
NERSC Trinity benchmarks [16] in USA, and EuroBen [8], ARCHER [25] and
Unified European Application Benchmark Suite (UEABS) [18] in Europe.

Author Proof

4 M. Radulovic et al.

Table 1. Scientific HPC applications used in the study

Name Area Selected no. of processes
ALYA Computational mechanics | 16-1024
BQCD* Particle physics 64-1024

CP2K Computational chemistry |128-1024
GADGET | Astronomy and cosmology | 512—-1024

GENE Plasma physics 128-1024
NEMO Ocean modeling 512-1024
QEP Computational chemistry |16-256

#Quantum Chromo-Dynamics (QCD) is a set of five kernels.
We study Kernel A, also called Berlin Quantum Chromo-
Dynamics (BQCD), which is commonly used in QCD simulations.
PQE stands for Quantum Espresso application. QE does not scale
on more than 256 processes.

In our evaluation, we used a set of UEABS applications. UEABS represents
a set of production applications and datasets, from various scientific domains,
designed for benchmarking the European HPC systems, included in the Part-
nership for Advanced Computing in Europe (PRACE) [21], for procurement and
comparison purposes. Parallelized using the Message Passing Interface (MPI),
these applications are regularly executed on hundreds to thousands of cores. We
study 7 of 12 applications from UEABS [18], listed in Table 1.1

Tools and Methodology

The applications come with input datasets and a recommended range of CPU
cores for the experiments. We use the Test Case A datasets, which are deemed
suitable for Tier-1 systems up to about 1,000 cores [18]. In all experiments, we
execute one application process per CPU core. The number of processes starts
from 16 (a single MareNostrum node) and it increases by powers of two until
1,024 processes. Some of the applications have memory capacity requirements
that exceed the available node memory, which limits the lowest number of pro-
cesses in the experiments, e.g., BQCD cannot be executed with fewer than 64 pro-
cesses (four nodes). The presented analysis keeps constant the input dataset and
varies the number of application processes, which refers to a strong scaling case.?

1 We could not finalize the installations of Code_Saturne and GPAW. The errors have

been reported to the application developers. The remaining three applications had
problems once the measurement infrastructure was included.
The alternative would be a weak scaling analysis, in which the problem size scales
with the number of nodes. Unlike HPL and HPCG, for which the problem size
is defined by the user and the input data is generated algorithmically, application
benchmark suites include specific input problem data. We are not aware of a pro-
duction application benchmark suite that has problems suitable for weak scaling
analysis. Although some of the UEABS benchmarks are distributed with two input
datasets, small and large, they are not comparable so are insufficient for weak scaling
analysis [26].

Author Proof

HPC Benchmarking: Scaling Right and Looking Beyond the Average 5

The application’s computation bursts were instrumented with Limpio [19]
and Extrae [4]. We used core performance counters [10] to measure FLOPS
performance (scalar and vector FLOPS counters) and uncore performance coun-
ters [9] to measure memory bandwidth (read and write CAS commands coun-
ters).

We analyze the application behavior at two levels of granularity. First, we
plot mean FLOPs and memory bandwidth utilization using end-to-end measure-
ments and averaging the values of all application processes. Second, we analyze
the fine-granularity measurements done at the computational burst level. For
each computational burst, we measure the FLOPs, bandwidth utilization and
the burst execution time. Afterwards, we analyze the cumulative distribution
function of the measurements.® As we show in this paper, these two levels of the
analysis can, and often do, actually lead to different conclusions.

3 Results

In this section, we analyze the stress of the production HPC applications on the
CPU and memory resources, and pay special attention to understand how this
stress may change during execution and as the application scales.

3.1 Floating-Point Performance Analysis

Figure la plots the average FLOPs/s utilization for different numbers of appli-
cation processes. The results show that the average FLOPs/s utilization of pro-
duction HPC applications is fairly low: for most applications it is below 30%,
and in the best case it reaches only 51% (CP2K-128 experiment). Figure 1b sum-
marizes the distribution of measurements done at computational burst level. We
divide the computational burst measurements into five clusters: 0-20%, 20-40%,
40-60%, 60-80% and 80-100% of sustained FLOPs/s, and then plot the portion
of execution time represented by each cluster. For example, in the BQCD-64
experiment, 72% of the time the FLOPs/s utilization is between 0 and 20%,
while for the remaining 28% of the time it is between 20% and 40%.

Our results show that detailed measurements are indeed needed, and that
plotting only average values may hide important information. The most obvious
case would be the QE-16 experiment. Although the average FLOP utilization
is only 24% (Fig. 1a), the application actually puts extremely high pressure on
CPU FLOPs for around 18% of its computation time (Fig. 1b).

We also analyze changes in the application behavior when executing them
using different numbers of processes. Both, average and per-burst measurements
indicate significant changes in the application behavior as the applications scale-
out?.

3 The cumulative distribution function, y = F(z), in this case presents the fraction of
samples y that are less or equal to a certain value x.

4 We remind the reader that we used the official input datasets, and followed the
recommendations about the range of CPU processes that should be used in the
experiments (see Sect. 2.2).

Author Proof

6 M. Radulovic et al.

100% r—
80% H I Lowest number of processes

0% [Highest number of processes
o
40% -
20% |- L B 1010
0% LO1L 0.1 ey 06
“b X ’\

O 5\ 0@@“& \(oas S N 5\4 @“ ot
V«\Qoo VN\O c° Q é »V w &@& o%@ \\gz»

(DGEMM)

Percentage of max.
sustainable FLOPs

(a) Average FLOPS utilization

l [10-20% [C320-40% 3 40-60% M 60-80% Hl 80-100% of the max. sus. FLOPs

"
£ 100%
£ 8% ﬁ 45
3
S 60% 0
:_’ 100{100{ |100| 99 100(100([100{100 100{ 100
S 40% . 80 [75
& 55 26
2 2% {45
3 18
o 0%
\@“ Py ob\@ Q@\b e \m \Q, o> cﬂ*\@“ w“

1 i
S s d\@ c° ¥ $$@ ;ﬂ?’ & ‘éﬁ\L AN

(b) FLOPS utilization on burst granularity

Fig. 1. Production HPC applications show fairly low FLOPS utilization, both on lowest
and highest number of processes.

This opens a very important question: Which application behavior is the
correct /representative one, i.e. which number should we report?

3.2 Memory Bandwidth Analysis

Memory bandwidth has become increasingly important in recent years. Keeping
the memory bandwidth balanced with the CPU’s compute capabilities, within
affordable costs and power constraints, has become a key technological challenge.
The increasing awareness of this challenge also resulted in the introduction of
the HPCG benchmark, as an alternative to HPL. The industry also responded to
the growing need for more memory bandwidth, and high-bandwidth 3D-stacked
DRAM products are hitting the market. Their manufacturers promise significant
performance boosts over standard DDRx DIMMs, although some independent
studies doubt whether and to what extent high-bandwidth memory will benefit
HPC applications [22].

Memory bandwidth collision can indeed have the strong negative perfor-
mance impact. When a workload uses more than 40% of maximum sustainable
bandwidth, concurrent memory accesses start to collide, which increases memory
latency causing performance penalties. Using more than 80% of maximum sus-
tainable bandwidth causes severe collisions among concurrent memory requests;
thus memory latency increases exponentially and memory bandwidth becomes
a serious performance bottleneck [11].

Author Proof

HPC Benchmarking: Scaling Right and Looking Beyond the Average 7

. E 100% - 28 I [owest number of processes
g E 80% [Highest number of processes
L gov

22 4w

g2

5% 2%

"2 o

K Ao z,v@b‘@ S or @\%sb \m @ N> \@ SR (A8 XN

& ot
x\;gCG 6:\ 00 ot IR }\/ P “"m‘é cfvcsf va”
o

(a) Average memory bandwidth utilization

l [30-20% [320-40% [40-60% [60-80% MM 80-100% of the max. sus. bw l

T

\Q’IP‘ = \Q’IP‘ R QX N0 \"13’ Qv Q \'fb Q’L (‘5\ \Q’IP‘ \k’ Q’Lb(

W Aon8
\ﬂccc’é’o‘“vbo 9 T ‘&* \:* @“ ”““
R

100%
80%
60%
40%
20%

0%

Percentage of execution time

(b) Memory bandwidth utilization on burst granularity

Fig. 2. Contrary to FLOPS, memory bandwidth utilization of production HPC appli-
cations is substantial.

Figure2 plots the memory bandwidth usage of UEABS applications. The
memory bandwidth values are plotted relative to the maximum sustained mem-
ory bandwidth measured by the STREAM benchmark. Again, we plot the results
at two levels of granularity: Fig. 2a plots average utilization over computation
time and for different numbers of application processes, while Fig. 2b shows fine-
granularity measurements at the computational burst level. The applications
under study show higher utilization of memory bandwidth, than FLOPs perfor-
mance, even for the average values.

Next we analyze the computational bursts measurements, presented in
Fig. 2b. The chart shows moderate to high memory bandwidth utilization. All
the applications under study have segments in which memory bandwidth uti-
lization exceeds 40%, and all but two of them, CP2K and GADGET, spend a
significant portion of time with bandwidth utilization above 60% or even 80%.

The computational burst measurements reveal some interesting scenarios,
which are more apparent in Fig. 3. In this figure, the z-axis is the average mem-
ory bandwidth utilization, as in Fig. 2a. The y-axis is the proportion of time for
which the memory bandwidth utilization is severe; i.e. more than 80% of the sus-
tainable maximum, which corresponds to the darkest shade parts of the bars in
Fig. 2b. Figure 3 shows that considering the average memory bandwidth on the
z-axis, ALYA-16 and CP2K-128 may seem to be bandwidth insensitive, as their
average bandwidths are around 50% and 40% of the sustained bandwidth. How-
ever, detailed in-time measurements show that they spent significantly different
proportions of the time with severe memory bandwidth utilization: CP2K-128

Author Proof

8 M. Radulovic et al.

spends only about 4% of its computation time, but ALYA-16 spends 55% of
its computation time, which presents a serious performance penalty. We find a
similar situation with BQCD-1024, GENE-128 and QE-1024. These applications
all have average memory bandwidth of around 60% of the sustained maximum.
Even so, QE-256 spends only 12% of its computation time with severe mem-
ory bandwidth utilization (more than 80% of maximum sustained). In contrast,
BQCD-1024 and GENE-128 spend 58% and 72% of their computation time,
respectively, with severe memory bandwidth utilization.

This is another confirmation that detailed measurements are needed, and that
plotting only the average values may be misleading. Applications under study
that spend significant amount of their computation time using more than 80% of
the sustained bandwidth have a severe performance bottleneck. In these phases of
their computation time, the applications would benefit out of increased available
memory bandwidth in the system. In our case, ALYA-16, but not CP2K-128, is
likely to benefit from higher bandwidth memories. It would reduce the bottle-
neck and increase the application performance. However, reporting only average
values of memory bandwidth cannot point out the necessary details.

Our suggestion would be that memory bandwidth utilization should be
defined at least with three numbers—as the percentage of execution time that
applications use 0-40%, 40-80% and 80-100% of the maximum sustained band-
width. This would correspond the portion of the execution time in which the
application experiences negligible, moderate and severe performance penalties
due to collision on concurrent memory requests.

3.3 Discussion

Our analysis emphasizes that HPC application behavior is tightly coupled with
the number of application processes. There are two main reasons for this. First,
application scaling-out increases the inter-process communication time. To illus-
trate this, in Fig. 4 we plot the portion of overall execution time that applications
under study spend in inter-process communication.

g Z100% ® |®OHPCG (6, 1029)
s ol 2 NEMO (512, 1024)
2 X .
é ':oo ’:E 80% v 6 A A BQCD (64, 1024)
5 A 8 6o% > A x ’<>QE(16, 1024)
25 3 V¥ V GENE (128, 1024)
S = : 40% B> [> ALYA (16, 1024)
o= 5 « <] CP2K (128, 1024)
.5 § E 20% O * B [0 GADGET (512, 1024)
E S ow vV | | |4 - HPL (16, 1024)
(S 0% 20% 40% 60% 80% 100%

Average memory bandwidth utilization

Fig. 3. Average memory bandwidth can mislead and hide potential bottlenecks.
BQCD-1024, GENE-128 and QE-256 have similar average memory bandwidths, how-
ever BQCD-1024 and GENE-128 spend significantly more time utilizing more than
80% of max. sustainable bandwidth, which is a serious bottleneck.

Author Proof

HPC Benchmarking: Scaling Right and Looking Beyond the Average 9

o 100% — |® @ ALYA A—A CP2K o GENE << QE
= ¥X BQCD << GADGET =P NEMO
ER: 80%
o
55 60%
<
;@ 40% _
EE 20%e-="9
Q 0% h |
16 32 64 128 256 512 1024

Number of execution processes

Fig. 4. Portion of total execution time spent in the inter-process communication for
UEABS applications, strong scaling.

Even for the low number of application processes, the communication is non-
negligible, and as the number of processes increases, it becomes the dominant
part of the overall execution time. The higher the portion of time that is spent in
communication, the lower the average utilization of FLOPs and memory band-
width (as detected in Figs. 1a and 2a). Also, in general, the higher the number
of processes, the smaller the portion of the input data handled by each process,
which changes the effectiveness of cache memory and the overall process behavior
(as detected in Figs. 1b and 2b).

HPC application behavior may be known by the application developers, but
it is often overlooked in all HPC application suites for benchmarking purposes.
State-of-the-art HPC application suites do not strictly define the number of
processes to use in experiments. For example, UEABS recommends running the
applications with corresponding input datasets on up to approximately 1,000
processes, but the minimum number of processes is not specified. Similarly, other
HPC application suites either provide loose recommendations about the number
of processes [15-17,25] or do not discuss this issue at all [8]. However, it is not
surprising that HPC application suites overlooked the problem that application
behavior is tightly-coupled with number of application processes. After all, this
problem does not exist for single-threaded benchmarks, and it was not detected
for HPC benchmarks that put high stress to a single resource, such as HPCG,
HPL or HPCC suite.

The essence of benchmarking is to provide representative use cases for char-
acterization and valid comparison of different systems. If the application suite
does not provide it, then the results are misleading. Our results show that it is
very important that HPC application suites specify narrow ranges for the num-
ber of processes that are representative of real-life application behavior, or at
least provide some guidelines so users themselves could determine these ranges
for their target platforms.

Author Proof

10 M. Radulovic et al.

4 Related Work

There are not many studies that analyse benchmarking methodologies and how
to represent evaluation results of HPC systems and applications. Bailey [1] pro-
vides common guidelines for reporting benchmark results in technical comput-
ing, following his similar summary of misleading claims for reporting results in
system evaluation [2]. He points out the possibilities of misleading conclusions
and potential biases from using projections and extrapolations, tuning levels,
evaluating non-representative segments of the workloads, etc. Nevertheless, he
presents several rules and advocates the community to pay attention and avoid
the biased results.

Hoefler and Belli [7] attempt to define ground rules and guidelines for the
interpretation of HPC benchmarking. The authors propose statistical analysis
and reporting techniques in order to improve the quality of reporting research
results in HPC and ensure interpretability and reproducibility. In their study,
they identify several frequent problems and propose rules to avoid them. Their
analysis covers methods for reporting the results of speed-up, usage of various
means, summarizing ratios, confidence intervals, normalization, usage of various
chart techniques, and others.

Sayeed et al. [23] advocate the use of real applications for benchmarking in
HPC, and that small benchmarks cannot predict the behavior of the real HPC
applications. They discuss important questions, challenges, tools and metrics in
evaluating performance using HPC applications. Afterwards, they evaluate the
performance of four application benchmarks on three different parallel archi-
tectures, and measure the runtime, inter-process communication overhead, I/0
characteristics and memory footprint. This way, they show the importance of
reporting various metrics, in order to have a better representation of application
and system performance. Since they measure these metrics on several numbers
of execution processes, the results differ from one execution to another. It is
clear from their results that on different numbers of execution processes, differ-
ent platforms perform better or worse, which can significantly bias the analysis
on certain scale of the experiments.

Marjanovié et al. [14] explore the impact of input data-set for three repre-
sentative benchmarks: HPL, HPCG and High-performance Geometric Multigrid
(HPGMG). They perform an analysis on six distinct HPC platforms at the
node level, and perform scale-out analysis on one of the platforms. Their results
show that exploring multiple problem sizes gives a more complete picture of the
underlying system performance, than a single number representing the best per-
formance, which is the usual way of reporting the results. They advocate for the
community to discuss and propose a method for aggregating these values into a
representative result of the system performance.

In our study, we focus on two important aspects of benchmarking with HPC
applications: the importance of defining the representative scale of the exper-
iments and measurement granularity in quantifying performance bottlenecks,
which are often overlooked by the community. To our knowledge, this is the first
study that analyses the importance of a deterministic range for the number of

Author Proof

HPC Benchmarking: Scaling Right and Looking Beyond the Average 11

execution processes. We also suggest a simple way to show several values for por-
tions of time spent in different utilizations of certain metric. It does not require
additional executions or special evaluation infrastructure, yet it gives much bet-
ter representation of application behavior and clearer focus on its bottlenecks.

5 Conclusions

A clear understanding of HPC system performance factors and bottlenecks is
essential for designing an HPC infrastructure with the best features and a rea-
sonable cost. Such a perception can only be achieved by closely analysing existing
HPC systems and execution of their workloads.

When executing production HPC applications, our findings show that HPC
application performance metrics strongly depend on the number of execution
processes. We argue that it is essential that HPC application suites specify nar-
row ranges on the number of processes, for the results to be representative of
a real-world application use. Also, we find that average measurements of per-
formance metrics and bottlenecks can be highly misleading. Instead, we suggest
that performance measurements should be defined as the percentage of execution
time in which applications use certain portions of maximum sustained values.

Overall, we believe this study offers new guidelines for accurately measuring
key performance factors and their impact on overall HPC performance.

Acknowledgements. This work was supported by the Spanish Ministry of Science
and Technology (project TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-
SGR-1051 and 2014-SGR-1272), Severo Ochoa Programme (SEV-2015-0493) of the
Spanish Government; and the European Union’s Horizon 2020 research and innovation
programme under ExaNoDe project (grant agreement No 671578).

References

1. Bailey, D.H.: Misleading performance claims in parallel computations. In: 2009 46th
ACM/IEEE Design Automation Conference, pp. 528-533, July 2009. https://doi.
org/10.1145/1629911.1630049

2. Bailey, D.H.: Twelve ways to fool the masses when giving performance results on
parallel computers. In: Supercomputing Review, pp. 54-55, August 1991

3. Barcelona Supercomputing Center: MareNostrum III System Architecture (2013).
http://www.bsc.es/marenostrum-support-services/mn3

4. Barcelona Supercomputing Center: Extrae User guide manual for version 3.1.0,
May 2015

5. Dongarra, J., Heroux, M., Luszczek, P.. The HPCG Benchmark (2016). http://
www.hpcg-benchmark.org

6. Heroux, M., Dongarra, J.: Toward a New Metric for Ranking High Performance
Computing Systems. Technical report SAND2013-4744, UTK EECS and Sandia
National Labs, June 2013

7. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 73:1-73:12, November 2015

Author Proof

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

M. Radulovic et al.

Home page of the EuroBen Benchmark. http://www.euroben.nl

Intel Corporation: Inte1®Xe0n Processor E5-2600 Product Family Uncore Per-
formance Monitoring Guide. Technical report, March 2012

Intel Corporation: Tntel®64 and TA-32 Architectures Software Developer’s Manual.
Technical report, July 2017

Jacob, B.L.: The memory system: you can’t avoid it, you can’t ignore it, you can’t
fake it. Synth. Lect. Comput. Archit. 4(1), 1-77 (2009)

Kramer, W.T.: Top500 versus sustained performance: the top problems with the
Top500 list - and what to do about them. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, pp. 223-230,
September 2012

Luszczek, P.R., et al.: The HPC Challenge (HPCC) Benchmark Suite. In: Proceed-
ings of the ACM/IEEE Conference on Supercomputing (2006)

Marjanovié, V., Gracia, J., Glass, C.W.: HPC benchmarking: problem size mat-
ters. In: Proceedings of the 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems, pp. 1-10,
November 2016

National Center for Atmospheric Research: CISL High Performance Comput-
ing Benchmarks. http://www?2.cisl.ucar.edu/resources/computational-systems/
cisl-high-performance-computing-benchmarks

National Energy Research Scientific Computing Center: NERSC-8 / Trin-
ity Benchmarks. http://www.nersc.gov/users/computational-systems/cori/nersc-
8-procurement/trinity-nersc-8-rfp /nersc-8-trinity-benchmarks

National Science Foundation: Benchmarking Information Referenced in the NSF
11-511 High Performance Computing System Acquisition: Towards a Petascale
Computing Environment for Science and Engineering. https://www.nsf.gov/pubs/
2006 /nsf0605 /nsf0605.pdf

Partnership for Advanced Computing in Europe (PRACE): Unified european appli-
cations benchmark suite (2013). www.prace-ri.eu/ueabs/

Pavlovic, M., Radulovic, M., Ramirez, A., Radojkovi¢, P.: Limpio: LIghtweight
MPI instrumentatiOn. In: Proceedings of the 23rd IEEE International Conference
on Program Comprehension, pp. 303-306 (2015)

Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - A Portable Imple-
mentation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers, September 2008. http://www.netlib.org/benchmark/hpl/

PRACE Research Infrastructure. www.prace-ri.eu

Radulovic, M., et al.: Another trip to the wall: how much will stacked DRAM
benefit HPC? In: Proceedings of the International Symposium on Memory Systems,
pp- 31-36 (2015)

Sayeed, M., Bae, H., Zheng, Y., Armstrong, B., Eigenmann, R., Saied, F.: Measur-
ing high-performance computing with real applications. Comput. Sci. Eng. 10(4),
60-70 (2008). https://doi.org/10.1109/MCSE.2008.98

TOP500 List, November 2014. http://www.top500.org/

Turner, A.: UK National HPC Benchmarks. Technical report, UK National Super-
computing Service ARCHER (2016). http://www.archer.ac.uk/documentation/
white-papers/benchmarks/UK_National HPC_Benchmarks.pdf

Zivanovic, D., et al.: Main memory in HPC: do we need more or could we live with
less? ACM Trans. Archit. Code Optim. 14(1), 3:1-3:26 (2017)

